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Energy stability theory has been formulated for two-dimensional buoyancy-thermo- 
capillary convection in a layer with a free surface. The theory yields a critical Rayleigh 
number RE for which R < RE is a sufficient condition for stability of the layer. RE 
emerges from the variational formulation as an eigenvalue of a nonlinear system of 
Euler-Lagrange equations. For the case of small capillary number (large mean surface 
tension) explicit values are obtained for RE. The analogous linear-theory results for this 
case are obtained in terms of a critical Rayleigh number RL. These are compared. It is 
found that the existence of the deformable interface can lead to a stabilization relative 
to  the case of a planar interface. This result is explained in physical terms. The energy 
theory is then generalized to include general flow problems having three-dimensional 
disturbances, non-Newtonian bulk fluids and general interfacial mechanics such as 
surface viscosity and elasticity. 

1. Introduction 
Free-surface problems in continuum mechanics have a characteristic nonlinearity 

which results from the fact that  the free-surface position is a priori unknown. Free- 
surface boundary conditions are applied on a surface whose location is part of the 
unknown solution. This characteristic nonlinearity persists even if the system involves 
only linear materials in the bulk and linear materials on the surface. 

Stability theories of free-surface systems must confront such nonlinearity. These 
stability theories in addition must confront other behaviours characteristic of 
free-surface problems, among which are inherent non-uniqueness and trajectory 
splitting. 

All of the above behaviours can be illustrated by means of a simple example shown 
in figure 1.  Consider an infinite container of Newtonian liquid. The liquid possesses 
surface tension on its interface with the bounding gas; body forces are absent and the 
system is stationary. This static configuration is (locally) stable. Consider, however, 
a disturbance of the interface such that a t  time t = 0 the interface consists of a ‘flat’ 
portion nearly everywhere plus a tall, isolated, axisymmetric spike as shown in 
figure l ( b ) .  It is conceivable that, as time increases, the surface tension will cause 
droplets to form owing to capillary instability (Rayleigh 1879). I n  this case a t  a time 
t = t , ,  an incipient droplet will be present as shown in figure 1 (c).  At a larger time 
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FIGURE 1. Sketch of the configurations of a free surface in a thought experiment. Body forces are 
absent and there is surface tension on the interface. (a )  The undisturbed state a t  t < 0. ( b )  The 
initial configuration a t  t = 0 containing an axisymmetric spike. (c) An incipient droplet formed 
at  t = t ,  > 0 by capillary instability where P denotes the one common point between the 
droplet and the spike. ( d )  The final state, t --f co, consisting of a single spherical droplet plus the 
infinite bath having a flat interface. 

t = t,, full spherical droplets, perhaps with smaller satellite droplets, will be formed 
while the remainder of the spike will have decayed into the bath through capillary 
forces. As t -+ 03 the system consisting of isolated, spherical drops plus the infinite bath 
with a planar interface will itself be a (locally) stable configuration. Clearly, there is 
infinite non-uniqueness in this system since any number of spherical droplets plus 
the bath comprises a (locally) stable configuration. Furthermore, a t  time t = t,, there 
is a trajectory that is not well defined. The point labelled P in figure 1 (c) will split 
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into two points, one associated with the droplet and one associated with the remaining 
spike. This splitting will generate a singular velocity field (Dussan V. & Davis 
1974). 

We wish to consider the formulation of a stability theory incorporating the effects 
of disturbances of finite amplitude and capable of giving stability limits for free-surface 
flows of quite general types. It is clear from the above illustration that such a theory 
must be nonlinear and will generally be a conditional theory, i.e. the stability limits are 
expected to be dependent on a norm (or amplitude) of the disturbance quantities. For 
example, the planar interface in the above illustration might be stable if certain tall, 
slender interfacial disturbances are excluded. This exclusion might take the form of a 
certain surface norm being sufficiently small. 

Stability theories that  incorporate the nonlinearities of the problem are either weakly 
nonlinear theories which pivot a perturbation procedure about a critical point of linear 
stability theory, or energy theories that use variational procedures. We concern our- 
selves here with the latter. 

There has only been one paper aimed a t  the development of an energy stability 
theory for free-surface flows. Dussan V. (1975) formulated the appropriate energy 
theory for a general system whose interface has constant surface tension. She was able 
to  relate the surface-stress boundary conditions to changes in surface energy and 
obtain sharp stability and instability results for the Rayleigh-Taylor problem. Her 
results have a range of conditional stability, expressed in terms of the L, norm of the 
surface displacement. Her formulation also provides an elegant link between the static- 
stability idea of physical chemistry and hydrodynamic theories applied to static 
systems. However, her formulation is not convenient for systems that are inherently 
dynamic, and does not make clear the ability to incorporate properties more exotic 
than constant surface tension (e.g. variable surface tension or surface viscosity). 

The present work aims a t  presenting a general approach to  the formulation of energy 
stability theory for free-surface flows. For simplicity, we examine a specific problem 
and formulate the theory for two-dimensional buoyancy-thermocapillary instability 
in a horizontal fluid layer ( $  2) and obtain a statement of the energy theory and the 
associated Euler-Lagrange equations in $ 3. This theory supplies a critical value R& 
of the Rayleigh number R2 for which R < R, gives a sufficient condition for stability. 
For this particular problem we explore in detail the small capillary-number behaviour 
($  4). I n  this limiting case we regain and (for two-dimensional disturbances) strengthen 
the results of Davis (1969), who presumed a priori that the free surface is planar. We 
obtain in $ 5  some linear-theory results for the same problem in terms of a critical 
value RL of R. I n  $ 6  we compare R, and RL, thus giving a picture of the global- 
stability behaviour. When R < RE, the static layer is stable and when R > RL it is 
unstable. When RE < R < R,, finite-amplitude subcritical instabilities may be present. 
Of particular interest is the illustration, through these perturbation results, of the 
conditional nature of the stability statements, and the connexion between the norm of 
the surface displacements and the physical variables of the problem. We then generalize 
(0 7)  the approach to general flow problems having three-dimensional disturbances, 
having general bulk constitutive behaviour, and general interfacial behaviour (surface 
excess mass, surface-tension gradients, surface viscosities, etc.). 
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FIGURE 2. A sketch of the ‘volume’ of a single wavelength of the disturbed layer having unit 
mean depth, wavelength X ,  and height z = 1 +~(z, t ) .  n is the unit outward normal to the 
disturbed interface. 

2. Formulation : two-dimensional buoyancy-thermocapillary instability 
(a )  T h e  governing system 

We shall use the following notation (refer to figure 2 ) :  d is the mean distance between 
two infinite horizontal surfaces; the lower surface is a rigid plane at  constant tempera- 
ture, while the upper surface is a free surface on which the heat flux is prescribed. These 
surfaces bound an incompressible, Newtonian liquid of mean density p, viscosity ,u 
and kinematic viscosity v = p/p.  The acceleration of gravity is g ;  ct and K are respec- 
tively the coefficients of thermal expansion and thermal diffusivity of the liquid. The 
space above the free surface contains a passive gas have negligible density and viscosity. 
We associate with the free surface a surface tension which varies with temperature. 

We use a system of Cartesian co-ordinates whose origin lies in the rigid plate and 
whose dimensionless vertical co-ordinate z and dimensionless horizontal co-ordinate x 
are scaled on d .  We thus consider two-dimensional fields, but indicate the generaliza- 
tion to  three dimensions in 5 7. The velocity vector v = (u, w), the temperature 8, the 
time t ,  the pressure p ,  and the surface tension 0- are referred to scales K/d, AT,  d2/K, 
,uK/d2, c0, where AT( > 0) is the temperature excess a t  the bottom compared to the 
top and go is the mean surface tension on the free surface. We employ the Boussinesq 
approximation. Under the above assumptions, the following non-dimensional groups 
emerge : R2 = aATgd3/Kv Rayleigh number; ( 2 . l a )  

P = V / K  Prandtl number; ( 2 . l c )  

M = a ,ATd /pK Marangoni number; ( 2 . l b )  

c = pK/Cr,d capillary number; ( 2 . l d )  

G = pgd2/ao Bond number. ( 2 . l e )  

R2 and M are dimensionless measures .of the importance of the two instability 
mechanisms to which the system is susceptible. In  the definition of M ,  a1 is the (con- 
stant) negative of the derivative of surface tension with respect to temperature. We 
therefore use a linear equation of state for surface tension. I n  particular, in non- 
dimensional form 

(2.2) (T(8) = 1-MC8.  
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The capillary number C measures the degree of deformability of the free surface since 
C -+ 0 implies that  the mean surface tension is very large. This interpretation will be 
made more explicit in $ 5 4  and 5 below, where we discuss solutions to the stability 
problem for small C. 

In  terms of the above parameters, the Boussinesq approximation requires that, if 

S = aAT, S+ 0 for R2 fixed. 

Note that S is not independent of the above groups but S = R2C/G. 
We locate the liquid-gas interface S ( t )  by writing 

S ( t ) :  z = 1 + y(z, t ) .  

For a sufficiently smooth general two-dimensional deformation of the interface, the 
unit, outward normal vector n to S has the form 

n = ( - yz, 1 ) / X  ( 2 . 3 ~ )  

where N EF ( 1  +yf)3.  (2 .3b )  

We define the unit tangent vector t to S as follows: 

t = (l,yJ/N. ( 2 . 3 ~ )  

The stress balance a t  the interface may be written as a single vector equation: 

(2 .4 )  
1 

G 
g i jn j  = --K(y)rr(0)ni-MB,,t,ti on z = l + r .  

Here rii is the stress tensor of the liquid 

(2 .5u,  b )  

( 2 . 5 ~ )  and K(y)  is the curvature, 

Commas denote spatial differentiation, Sij is the Kroneker delta and the summation 
convention is assumed. 

ITii = -psij+Eij, €.. 23 = 2) .  2,3 .+v. 3 , i )  

K ( r )  = 7zz/N3. 

The kinematic boundary condition takes the form 

yt = Nvini on z = 1+y. (2 .6 )  

0,(ni = - 1  on z =  1+y. (2 .7 )  

For simplicity, we assume that the heat flux on S is prescribed, 

This is most appropriate for convection over a gas, and its adoption here has some 
implications with regard to the perturbation results of Q 4 ,  which we shall comment 
upon later. 

On the rigid, lower plane, the temperature is fixed, 

v i = o ,  z = o  ( 2 . 8 ~ )  

e = 1 ,  z = o .  (2 .8b )  

Finally, the Boussinesq equations for the bulk liquid have the form 

P-1 (2' L + v . v .  3 a .3 )  . = crij,j+R2eki, 

ae 
- + vie,i = vw, 
at 

( 2 . 9 ~ )  

(2 .9b)  

where ki = (0, l) i .  



6 3 2  8. H .  Davis and G .  M .  Homsy 

( b )  T h e  basic state 

We can find a motionless basic state consistent with (2 .2) - (2 .9)  of the form 
- e =  1 - 2 ,  ( 2 . 1 0 4  

7 = 0. ( 2 . 1 0 c )  
~ i j  = G[(x - 1 )  + +S(Z - 1)2]  Sij, ( 2 . 1 0 b )  

This layer has a flat top, no motion, a linear temperature profile and isotropic, hydro- 
static stress consistent with ( 2 . 7 )  and ( 2 . 8 b ) .  

( c )  The disturbance equations 

Disturbances of the basic state ( 2 . 1 0 )  satisfy the nonlinear system 

P-’ - + v q i  = uij, j + R28ki, 

a0 

(2 .1  1 a )  

(2 .1  1 b )  

(2 ) 
- 4- vi 8,{ = v20 + u,, 
at 

= 0. (2 .1  1 c )  

The forms of u, n, t, N ,  uij, cij and K are identical to those of ( 2 . 2 ) ,  ( 2 . 3 )  and ( 2 . 5 ) .  The 
stress boundary dondition ( 2 . 4 )  then takes the form 

1 
cij’nj = (K(7 )  [a(@ + MCT] - G(7 + &P),> ni - M(B,, - Y , ~ )  t ,ti .  (2 .11  d )  

The middle term in (2 .11  d )  comes from the basic-state contribution to  8 and, since 7 
depends only on x and t ,  7 , i t i  = yt/N. The kinematic condition remains unchanged 

(2 .1  1 e )  
in form: 

r , ~ ~  = Nvini on z = l + q  

and the thermal condition on the free surface is 

8,ini = ( 1  - N ) / N  on z = 1 +7. ( 2 . l l . f )  

Finally, we have the boundary conditions on the rigid plate: 

v i = 8 = 0  on x = O .  (2.1 1 g )  

System ( 2 . 1 1 )  gives the basic equations that govern two-dimensional fluid motions 
driven jointly by buoyancy in the bulk and surface-tension gradients on the free 
surface. It is from these equations that statements of stability or instability may be 
made. While they form the focus of most of the remainder of the paper, we discuss 
generalizations to  three dimensions, several bulk fields and more elaborate interfacial 
mechanics in $ 7 .  

3.  Energy stability theory 

We consider system (2 .11  ) which applies on the interval 

-a2 6 z 6 co, 

(a,) Prel iminaries  

0 6 2 < l + y ( x , t ) ,  t 2 0. 
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Since the range of x is infinite, we must consider that all disturbance quantities remain 
bounded for 1x1 + cc so that the power integrals exist. We shall assume that vi, 8, p and 
7 are each X ,  periodic in z. [For disturbances that are Fourier-transformable or almost 
periodic, similar results apply; see Joseph (1976) for a discussion.] Apart from the X ,  
periodicity and sufficient smoothness properties, vi, 8, p and 7 are arbitrary; in 
particular, they have arbitrary amplitude. 

The aim here is to  obtain the power integrals from which we shall obtain a condition 
of certain stability. We shall find a stability limit R& such that, when R < RE, the basic 
state is asymptotically stablein the mean. Here RE depends on M ,  C and G. RE emerges 
as the minimum eigenvalue of a set of nonlinear Euler-Lagrange equations obtained 
from the power integrals. 

( b )  The  power integrals 

We define the integral over the free surface of a quantity f as follows: 

where ds  is an element of arc length along 8 ( t )  and X , ( t )  is the arc length of the free 
surface in one period in x, i.e. 

and N is given in ( 2 . 3 b )  as a functional of 7. The equivalent of ( 3 . 1 )  over the corre- 
sponding fixed domain is given by 

where 

We thus have 

r 

( 3 . l b )  

The 'volume' integral (in two dimensions) of a quantity f over one period in x is 
defined as follows: xo l + y ( s . t )  

(f) =J 1 f (X ,Z , t )dZdX.  (3 .3 )  
0 0  

The first power integral, the mechanical-energy balance, is obtained by multiplying 
( 2 . 1 2 ~ )  by vi and integrating over the material volume defined in ( 3 . 3 )  and shown in 
figure 2,  using the divergence theorem and the continuity equation (2.11 c ) .  The result 
involves the term J ,  J = { v ~ u ~ ~ , ~ ) .  
It may be shown that 

= /m a a? 3 2 23 23 

where we have used the definition (2 .5b ) ,  the no-slip condition on the soIid, and the X ,  
periodicity of the disturbances. The interfacial stress condition (2.11 d )  allows us to 

v . ~ . . n . - - 1 ( ~ . . s . . ) ,  

write 



534 

We can thus write down the mechanical-energy balance: 

S.  H .  Davis and G .  M .  Homsy 

d 
+P-';Ei (vi  vi) = R2 (we> + J .  (3.4b) 

This generalizes the equation given by Davis (1969) to arbitrary surface displacements 
and is equivalent to  that obtained by Dussan V. (1975) when specialized to constant 
surface tension, M = 0. 

We can obtain the second power integral, the 'entropy balance ', by multiplying 
( 2 . l l b )  by 6 and integrating. If  the boundary conditions on the solid and the X ,  
periodicity are used, we obtain the equation 

The power integrals (3.4) and (3.5) are tightly coupled to the surface displacement 9, 
both through the appearance of 9 in the definition of the volume integral and through 
the explicit appearance of 9 in the boundary term in J .  This coupling suggests that the 
kinematic condition (2.1 I e )  be treated as a surface evolution equation for a and that a 
surface power integral be defined. Several choices for weight function can be made. The 
following seems particularly convenient: multiply (2.11 e )  by (9 + &Sy2)/Nand integrate 
over S(t). We find that 

This choice is suggested by the appearance of the right-hand side of (3.6) in J of (3.4) 
so we can use this form to eliminate the explicit dependence on G in the energy theory to  
come. I n  other words, we wish to form a generalized energy functional E as the sum 

#- 

This linear combination must be positive definite. When 191 < 3/S, as i t  must be under 
the Boussinesq approximation, then the surface integral above is positive. Hence, 
E is positive if A,, A, > 0. A,  and A, are called linking parameters (Joseph 1965) and 
should be chosen optimally to give the largest parameter region of certain stability. 

I n  accordance with the discussion above we choose A, = G/C. The parameter G is 
thus suppressed explicitly but still has an implicit effect through the form of the 
resulting equations. This is important since we know from linear theory (Smith 1966; 
Zeren & Reynolds 1972) that, for small to moderate capillary numbers C ,  the Bond 
number term damps the long-wave modes described by Scriven & Sternling (1964) and 
the interfacial modes of Gummerman & Homsy (1974). Thus, for G = 0 the layer is 
always unstable to long waves according to linear theory. The results that  we shall 
report in 8 4 are in fact for modes of moderate length and so are not expected to be 
severely affected by such gravity-wave effects. In  any case, the choice of the linking 
parameter A, = G/C is one of convenience and so presumably it is not an optimal 
choice. (One could, of course, elect to  make A, general.) If, indeed, this choice is non- 
optimal, t,hen the stability limits so obtained may be more conservative than need be. 
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We thus define+ the positive-definite ‘generalized energy ’ functional E, 
n 

(3 .7a)  

where h > 0 is the remaining linking parameter which we can choose to give the 
largest region of stability available in the theory. We can then define the additional 
functions that appear in the ‘generalized energy’ balance as follows: 

9 = 2(w4) (3.7b) 

( 3 . 7 4  9 = 3(cijeij) + (4,iQ,i) 

where Q = Rho. The resulting energy-evolution equation is thus 

(3.8) 
dE 
- = -9+WY+Y, 
dt 

where (3 .9)  

It is from this energy-evolution equation that statements of stability may be made. 

( c )  The energy theory 

We follow the approach of Davis & von Kerczek (1973) and seek values R,(M, C) such 
that the condition R < RE guarantees asymptotic stability in the mean of the basic 
state. To this end, divide the generalized energy equation (3.8) by E and consider the 
maximum$ of this ratio as follows: 

--- dE - ( W ~ - - ~ + Y ) / E  ,< v ( ~ )  for all t ,  
E dt 

(3.10a) 

where 

( 3 . 1 0 ~ )  
vi, 4 ,  71 vi,i = 0 ;  7 = 0 ;  ?Ii = 4 = 0,  z = 0 ;  

and s, 
vi, 4, 7 are X ,  periodic in x and sufficiently smooth 

Since it follows from (3.10) that 
E ( t )  < E(0)e’(”)t, 

a condition for stability is that  W < W E ,  where W E  is the smallest value of W such 
that ~(9,) = 0. This translates into finding the Euler-Lagrange equations for 

6 ( 9 8 - 9 + + )  = 0 (3.11) 

against admissible functions defined by L@ I n  this class, conservation of mass implies 

that  volume is conserved so that the condition 7 = 0 is required. If we call p and L 
t The ability to explicitly eliminate G for the right-hand side of (3.8) is directly related t o  the 

choice of surface norm, equations (3.6)-(3.7) ; this furnishes one justification for its use. 
1 We assume that v ( B )  $ 0. I f  v(B) were identically zero, then the condition R < RE would 

still be the stability condition for dE/dt < 0 but this would not guarantee that E + 0 as t + 00. 
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2p(x, z, t )  the Lagrange multipliers associated with this condition and v ( , ~  = 0, 
respectively, the unconstrained variational principle associated with form (3.11) is 

s 9 ~ - B + Y + + z p v i , i ) + p  7 = 0. (3.12) 
given as follows: 

( L ) 
I n  taking variations, we shalI require the following formulae: 

SP = 2(WSgS + q5Sw) + 2 j X  wq5s7; 

6 9  = - 2(eij,iSv, + V2#SgS) +j {2NeijnjSv, + 2N#,iniSq5 + (+eijeij  + #,,q5,,) 87); 

(3.13a) 

X (3.13 b )  

S(2pv,,,) = 2(p,,Sv,+v,,,Sp)+ 2 ( p N n , 6 v , + ~ v ~ , ~ & r ) ;  ( 3 . 1 3 ~ )  

(3.13d) 

It is convenient in calculating 6 9  to  define the directional derivative of a surface 
quantity q as follows: 

q I  = aq/ax + TZ aqlaz. 

This allows us to perform integration by parts along the surface S( t )  since q’ is pro- 
portional to  the tangential derivative: q’ = N aq/as. 

Care must be taken in order to include the variations ST. For example, for a func- 
tional F defined on the surface, we have 

{NFeS/3+ [NFe88,- (NF7,)’]S7)dx. 
= sx 

I n  computing $9, we have need for the following formulae: 

6K = “-3(Sq)’]‘; 

W t j )  = (0, ‘ ) j  (87)’; 
6(Nni) = - (1, O)j (&q)’; 

6tj = nj(S7)’/Nz; 

sqj = -t j(6y)’/N? 

Hence, 

and 

s, PSK = s, (F’N-3)’67, 

(3.14a) 

(3.14b) 

(3.14 c) 

( 3 . 1 4 4  

(3.14e) 

(3.15 a) 

c n 

J FvjS (Nn j )  = J (Fu)’Sr (3.15b) 
X X 

( 3 . 1 5 ~ )  

After much manipulation, we find that 
P 

(3.16a) 
X 
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where 
1 
C 

= - K ( a  + MCq) Nn, - M(#‘/ Rh - qz) ti; (3.16b) 

( 3 . 1 6 ~ )  @ = Mv;t,/Rh + hR( 1 - N ) ;  

H = - {[ [ (0- + MCq)  vini N]’  
1 
C + [ K ( a  + MCq)  u]’ + [K(a  + MCq)  w, n,N],} 

+RU$qzN- l ) ’++ , (1  -w1 -“((#’/RA-7x) viti)z- (vUin,N-2(#’/Rh-rx))’ 

+ (v,ti)’ - (+,vjtj)’/Rh - Kn,v,N] (3.16d) 
and 

M C  
Rh 

0-= 1--$. (3.16 e) 

The Euler-Lagrange equations and natural boundary conditions may now be 
written down by combining (3.12), (3.13) and (3.16).  The result is as follows: 

O-i i , j  + 9 # k i  = 0, 

V2$ + ww = 0, 

(3.17a) 

(3.17b) 

( 3 . 1 7 ~ )  

(3.17d) 

Ca. .n .  23 3 = aK(a+MCq)n,-SMC($‘/RA-q,)t,/N, z = 1 +q,  (3.17e) 

(3.17f 1 
1 M  
2 Rh 

$ , ,n i=- -v l t i /N+Rh( I -N) ,  z = 1 + q .  

C[28w$  - & ~ ~ ~ e , ~ - # , ~ $ , , + p ]  + [[(0-+MCq) V ~ ~ ~ N I ’ N - ~ ] ’  + [K(0-+MCq)ul’ 

+ [ K ( a + M C q )  winiN],+ RhC[($q,N-l)’ +q&(1 - N ) ]  -MC[((#‘/Rh-qz)wit,),  

- (winiN-2(#’/Rh-qx))’+ (viti)’- ($,wjt,)’/Rh -Kvin ,N] ,  (3.179) 

q = 0. (3.17 h)  

Here (3 .17a,  b, c) respectively result from the bulk variations Sv,, 8$ and Sp respec- 
tively. Equations (3.17e, f, g, h)  respectively result from surface variations Sv,, 84, 8q 
and S/3. 

The system (3.17) constitutes a free-boundary problem. However, in contrast to all 
previous energy analysis in hydrodynamics (except Joseph & Hung 1971) for which the 
Euler-Lagrange systems are linear, system (3.17) is nonlinear. (The bulk equations 
(3.17a, b, c) are linear but the (natural) boundary conditions are nonlinear.?) This 
nonlinearity indicates that energy theory of free-surface problems should lead to 
conditional stability results, i.e. the stability limits should depend not only upon the 
parameters of the problem (here M ,  C, G) but upon the disturbance amplitude. When 
axisymmetric Taylor vortices are examined by energy theory (Joseph & Hung 1971), 
a conditional result emerges. The only interfacial example in the literature is in 
Rayleigh-Taylor instability where Dussan V. ( 1975) obtained threshold amplitudes 
for both stability and instability. These issues will be discussed more fully in 9 7.  

L with 

t This is a structure reminiscent of inviscid water waves. 
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4. Energy theory for small capillary number 

(a) The  perturbation expansion 

The Euler-Lagrange system (3 .17)  is strongly nonlinear. Hence, apart from a numerical 
study, limiting cases must be attacked in order to gain insight into the meaning of 
the energy limit. 

It has been observed by Scriven & Sternling (1964) and Smith (1966) that for most 
fluids under most conditions the capillary number C is quite small, commonly ranging 
from to For example, a layer of pure water 1 cm deep a t  20 "c has 
C = 2 x lo-'. It is only under special circumstances, such as for thin layers with low 
interfacial tensions, that C approaches unity. Hence, we shall examine system (3.17) 
for C -+ 0. In  so doing we shall recover a t  first order the previous energy results of an 
analysis (Davis 1969) that presumed a flat interface. We shall further obtain the first 
non-zero correction of the energy limit RE for small C. In  so doing we obtain a con- 
nexion between the conditional limits and the physical variable C. In  order to make a 
useful comparison, analogous linear theory results must be obtained; these are given 

We fix M and G and seek a regular perturbation solution of system (3 .17)  in powers 

(Vi, # , p ,  y)  N ( V p ,  p, p@), y@)) + c ( v p ,  fp,p(1), p )  + . . . ( 4 . 1 ~ )  

and seek the energy limit RL of the Rayleigh number R2. As such, we must likewise 
write 

R = R(0) + CR(1) + O( Cz) ( 4 . l b )  

and h = A@) + C N )  + 0 (C2 ) , (4.1~) 

p = p ( 0 )  + cp(1) + O(CZ), ( 4 . 1 d )  

where h is the linking parameter and p is the Lagrange multiplier introduced to con- 
strain y to have a zero mean. In terms of ( 4 . l c ,  d )  and (3 .9 )  we have 

L 2  = W(0) + C@(1) + 0 (CZ) . (4.1 e )  

W is retained in the expansion, since it appears naturally below as the eigenvalue of the 
first-order problem. 

If we substitute forms (4 .1)  into system (3.17) and equate to zero coefficients of like 
powers of C, we obtain a set of problems to be solved sequentially. This set is defined on 
the domain [0 ,  X o ]  x [0,1+ 73. It is convenient to solve them on the fixed domain 
[0,  X o ]  x [0 ,1+ y(O)]. The interfacial conditions must then each be referred to the 
unperturbed position z = 1 + 7(O) in the usual way. 

in $ 5 .  

of C. We write 

( 4 . 2 ~ )  

(4 .2b )  

( 4 . 2 ~ )  

( 4 . 2 d )  



(4 .3e )  

(4 .3f  1 

and now a prime denotes a/ax+qF)a/az.  Equations ( 4 . 3 ~ )  and (4 .3b )  are obtained 
from condition (3 .17e )  by resolving into components normal and tangential to #( t ) ,  
respectively. 

Systems (4 .2 )  and ( 4 . 3 )  are inherently nonlinear since all the interfacial conditions 
are applied on z = 1 + q ( O )  where r ( O )  is unknown. However, in our problem there is a 
decoupling that makes the solution elementary. To see this, we write condition ( 4 . 3 ~ )  
in the form 

?$!!/N(ON = 0.  

Since ~ ( 0 )  must be X o  periodic and by equation (4.3 e )  of zero mean, it follows that 

?p E 0. (4 .4 )  

Hence, the limit C + 0 is equivalent to large mean surface tension and so a t  leading 
order there is a zero surface displacement. Scriven & Sternling (1964)  have made the 
same observation for the linear stability theory. The same result is seen to apply in 
energy theory, a feature only assumed by Davis (1969) .  The present work justifies this 
assumption by showing that displacements ~ ( 0 )  that are only kinematically constrained 
(i.e. belong to class &) likewise satisfy the dynamic condition ( 4 . 4 ) .  

As a result of the expansions (4 .1 )  and result ( 4 . 4 ) ,  we have the 

n = do) + Cdl) + O( C2),  

N = N" + O(C2), 

( 4 . 5 a )  

(4 .5b )  

(4 .5c )  

where n(0) = (0, l ) ,  t(0) = ( I ,  0 ) ,  NCO) = 1, ( 4 . 5 4  

t = t (0 )  + Ct?) + 0 (C2 ) , 

n(1) = - 'lz (1) t (0) , t( 1) - - 7s (1) n (0). ( 4 . 5 e )  

If we use results (4 .4 )  and ( 4 . 5 4 ,  then condition ( 4 . 3 4  recovers the kinematic 

w(0) = 0, z = 1.  (4 .6)  

condition for flat interfaces, 

If we use results ( 4 . 4 )  and ( 4 . 6 ) ,  then conditions ( 4 . 3 b , c )  become 

z =  1, ( 4 . 7 ~ )  

(4 .7b)  
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FIGURE 3. The stability boundaries for buoyancy-capillary instability of a layer having a non- 
deformable (C = 0) planar interface. When R < RF(M),  infinitesimal non-oscillatory distur- 
bances decay according to the linear theory of Nield (1964). When R < Rg’(M) disturbances of 
arbitrary amplitude decay according to the energy theory of Davis (1969). 

The system (4.2),  (4.6) and (4.7) is equivalent to the two-dimensional version of that 
of Davis (1969), derived from the restricted variational principle with 7 = 0. (It is 
important to note that the first-order problem is nonlinear because of ( 4 . 3 ~ ) .  However, 
its particularly simple solution leads to a system which is linear.) As such, the system 
must be self-adjoint; the appropriate scalar product ( ~ ( l ) ,  ~ @ ) )  of ~,Wand $(2)is given by 

(p, p) (vy)@) + pp), (4.8) 

where 

Furthermore, it will be useful in what follows to note that (4.2), (4.6) and (4.7) have 
separable solutions whose x variation is proportional t’o exp (iax), 

The energy limit Rg) is given by the above system (Davis 1969, figure 1) as 

R$)(M)  = min max R(O)(h, a, M ) ,  
a h  

(4.9) 

where a is the wavenumber in the x direction. It is seen (Joseph 1965; Davis 1969) that  
h(O) = 1 for M = 0 and increases monotonically with 1M. We show these results together 
with those of linear theory (Nield 1964) in figure 3. We shall refer to  them in 5 6 below. 
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( 4 . 1 0 a )  

(4 .10  b )  
( 4 . 1 0 ~ )  

(4 .10d)  

(4.10e) 

The results of the normal component of (3.17 e )  is that 

so that in terms of normal modes we have 

a2 

q g  = 2[c4ynpLp]8=1 ,  

p = - 3 [.-$9’.p’40’]z=,. (4 .11 )  

The displacement ~ ( l )  may be calculated from the solutions of the O( 1) problem. It is 
found that q(l) f 0, and in particular q(1’ = q,exp ( i a z ) .  If we use (4 .11 ) ,  then the 
tangential component of (3 .17  e )  and (3 .17  f) becomes a t  O(C) : 

z =  1, ( 4 . 1 2 ~ )  

(4 .126)  

1 M  

1 M  

g l ~ ) n ~ ) t ~ o )  + - __ (1) - A ,  + RU)B,, 2 h(O)R(O) $jJx - 

u$i = b,, 

$ , P h i o )  - =)ug) = C, + R(’)D,, z = 1, 

2 = 1 

or ~ ( 1 )  = E ,, z = 1, ( 4 . 1 2 ~ )  

where A,,  B,, C,, D,, El and b, are given in the appendix and depend on O( 1 )  solutions, 
R(O), h(O) and A(,). Equations ( 4 . 5 e )  have been used. The constant in b, is chosen so 
that El is 5, periodic and has a zero mean. 

The inhomogeneous system (4 .10 )  and (4 .12)  only has solutions if a solvability 
condition, using the scalar product ( 4 . 8 ) ,  holds. We obtain this condition by multiplying 
( 4 . 1 2 a )  by via), (4 .12b)  by $jJ(O), adding, integrating over one cell, and using the diver- 
gence theorem and the boundary conditions. The result is 

L S X  Sx X (4 .13)  

Here SX denotes the integral over x, 0 < x < X o ,  along the undisturbed surface z = 1 .  

We now use the conditions (4.5), (4 .7 )  and ( 4 . 1 2 a , b , c )  and relations (4 .5e)  after 
observing that the form, say, c~$)np)v i~)  = (cr$)n$o)np)) ~ ( 0 )  + ( cT&p)t$o)) do). Condition 
(4 .13 )  then becomes 

(l)n~o)#(o) -S #l!)nio)+(l) = - 2 g ( 0 )  (#(o)~(o)). g$)ny)vf‘) - gj?)@)$) + 

Since the first-order fields and A,,  B,, etc., are known, this relation determines R(l). 
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0 
10 
20 
25 
30 
35 
40 
45 
50 

2.10 
2.08 
2.08 
2.08 
2.10 
2-12 
2.14 
2.16 
2-18 

1.00 
1.05 
1.15 
1.30 
1.40 
1.55 
1-75 
2.15 
2.85 

25-9 
24-2 
22.1 
20.9 
19.5 
17.9 
15.9 
13.6 
10.4 

669 
586 
490 
437 
380 
319 
254 
184 
109 

0.000 
0.205 
0.454 
0.582 
0.732 
0.903 
1.14 
1.32 
1.66 

TABLE 1. Results of numerical calculations for the energy theory of buoyancy-thennocapillary 
layers with C + 0.  a(0) and are the optimal wavenumber and linking parameter, respectively. 
The critical Rayleigh number of energy theory is given by R P  + BR$)R;’C+ O(Ca). 

Examination of (4.14) shows that, in order for R(1) to be non-zero, either + 1 or 
the surface integrals over x, arising from the boundary conditions, must not vanish. 
The formulae for A,, El and C, given in the appendix show that these expressions 
contain terms linear in the first-order fields or ~ ( 1 )  and proportional to M ,  or terms 
quadratic in the first-order fields and ?(I). These quadratic terms give no contribution 
to R(l), since they are proportional to eziaz (with zero mean), and hence are orthogonal 
to the first-order fields, cf. (4.14). The only terms which contribute to R(l) are those 
proportional to M .  With the aid of the expressions for A,,  B,, etc.; in the appendix, 
we find that (4.14) reduces to 

It is possible to show that the bracketed term multiplying h(l) is [8R(O)/8h],,,(0) and is 
therefore zero since A(”) is chosen to maximize R(0). In this case h(l) is undetermined and 
R(1) is given by 

The denominator in (4.16) is positive since it is a normalization constant of system 
(4 .2) ,  (4.6) and (4.7). Hence the sign of R(l), given by (4.16), is determined by the 
product on the surface of and the normal stress ujo)n$o)nio). In the case that above 
a rising current (i.e. wLo) < 0) the normal stress is positive (negative), R(’) is negative 
(positive). 

It is easy to show that the most dangerous wavenumber is do) + O(C) ,  where do) is the 
critical wavenumber of the O( 1) problem. Hence, R$) may be evaluated using a = do). 
We have computed RE) using (4.16); the details of the numerical method are given in 
the appendix. The results are given in table 1 and figure 4. We note that for 
0 6 M 6 ME x 56, R(1) > 0 indicating that the energy limit is raised by allowing weak 
surface deflexions. We discuss this in more detail in $6 where we compare with the 
analogous results for the linear stability problem. 
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FIQURE 4. The function R$(M) for the present two-dimensional energy theory of buoyancy- 
thermocapillary oonvection in layers. RF is the O(C)  correction to the R Y .  

We conclude from (4.14) that without thermocapillarity, M = 0 (in which case 
h(O) = l ) ,  we have R(l) = 0. This result depends on our choice of the thermal condition 
on the free surface and may not hold for more general cooling laws. 

5. Linear stability theory for small C 
In order to assess the global stability of buoyancy-thermocapillary layers we must 

have linear theory? results for the same parameter ranges as we do for energy theory. 
Although Smith (1966) and implicitly Zeren & Reynolds (1972) and Nield (1977) give 
small C results, it  is useful to develop explicit perturbation results for direct comparison 
with those of 3 4. We discover the interesting result that surface deflexions in thermo- 
capillary convection may either be stabilizing or destabilizing compared to the case of 
no deflexion. 

The linear stability problem is governed by the linearized version of system (2.12) as 
follows : 

P-'V,,~ = u ~ ~ , ~  + R28ki, ( 5 . 1 ~ )  

8, = V28+ w, (5.lb) 

vi,i = 0, ( 5 . 1 ~ )  

t This linear theory, though given for convenience below in terms of two-dimensional 
disturbances, is valid for three-dimensional disturbances as well. 
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with v i = e = o ,  z = i ,  (5.ld) 

Crijn(;o)n$O) = yzz - Gy, z = 1, ( 5 . l e )  

riinj'"t$O) = -N(e,i-y,i)t$O), z = 1, ( 5 . U  1 
yt = vinio), z = I ,  (5.19) 
O,inio) = 0, x = I .  ( 5 . l h )  

We set Re = $, and expand the field variables (vi, $, y) and the eigenvalue R in 
powers of C .  

The leading term of (5.1 e )  is 
(a)  The first-order problem 

y$Z - Q p  = 0. ( 5 4  

It is easy to show that the only Xo-periodic solution of (5.2) having a zero mean is 

y(0) = 0, (5.3) 

a result due to Scriven & Sternling (1964).  Using thisresult, theleading-order governing 
system, assuming stationary onset, is as follows: 

w(0) = 0, z = 1, 

$zp' = 0, z = 1. 

This eigenvalue problem was examined by Nield (1 964).  

( 5 . 4 a )  

(5 .4b)  

(5.4c) 

( 5 . 4 4  

(5.4e) 

( b )  The adjoint problem 

We shall need the problem adjoint to system (5 .4 ) .  We define the adjoint solutions 
(fii, $,$) by the integral relation 

Using the divergence theorem, the continuity equation, boundary conditions (5.4d)- 
(5 .49)  and the requirement of Xo periodicity results in the adjoint system 

3ij,j + R(0)$ki = 0,  ( 5 . 6 ~ )  

V2$ + R(O)S = 0, ( 5 . 6 b )  

v". . = 0, ( 5 . 6 ~ )  

v"i = $ = 0, z = 0,  (5.6d)  

3..n(!)t!O) a3 3 z = 0, = 1, (5 .6e)  

a. a 

G = O ,  z = 1 ,  (5 .6f  1 

z =  1. 

We now seek to correct Nield's results for small but non-zero C .  
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( c )  The sewnd-order problem 

At O ( C ) ,  ( 5 . l e )  takes the form 

from which we can obtain $l)(x).  The remaining O(C) system takes the form 

( 5 . 8 ~ )  

(5 .8b)  

( 5 . 8 ~ )  

(5.8d) 

where 

There exists a solution of system (5 .8 )  only if the following orthogonality condition 

(Ci(c@j + R(o)$(l)ki) + $(Va@l) + R(O)w(l))) = - R(1) (G$(O) + do)$).  (5.10) 

When condition (5 .10)  is simplified using the divergence theorem and boundary 
conditions (5.4d)-(5.4g) and (5.8d)-(5.8g),  we find that 

with (Ci, 4) holds: 

(5.11) 

As before, both the first-order problem and its adjoint have separable solutions propor- 
tional to exp {im}. From (5.7), ~ ( l )  - exp {im} and thus the surface integrals in (5.1 1 )  
are non-trivial. Thus, using (5 .9 )  and the continuity condition (5 .8c) ,  we have 

(5.12) 

Once again, using (5.7), 

and we find that 

The sign of R t )  is thus determined by the product on the surface of the normal stress 
and Gz. Equation (5 .12)  illustrates quite directly that Rg) is zero when there is no 
thermocapillarity, i.e. for M = 0. In fact, it  is possible to show that RO, R@), . . . are all 
zero for an insulated-top free surface for M = 0. This is the case because, for M = 0 ,q  
is determined by (5.1 e ) ,  which decouples from (5.lf) and the stationary form of (5.18).  

18 . r t ~ 9 8  
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M 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 

a ( 0 )  

2-10 
2.10 
2-08 
2.08 
2.06 
2.06 
2.04 
2.04 
2.04 
2.02 
2.02 
2.02 
2.02 
2.02 
2.02 
2.02 

R p  

25.86 
25.10 
24.31 
23-48 
22.61 
21-69 
20.73 
19.70 
18.61 
17.44 
16.17 
14.78 
13.22 
11.44 
9.300 
6.455 

R?)a 

669 
630 
591 
551 
51 1 
47 1 
420 
388 
346 
304 
261 
218 
175 
131 
86.5 
41.7 

RY 

0 
44.9 
87.8 

126 
162 
190 
216 
229 
234 
232 
212 
176 
120 

- 49.2 
- 70.0 

41.1 

 TAB^ 2. Results of numerical calculations for the linear theory with stationary onset of 
buoyancy-thermocapillary layers with C -+ a. a(0) is the optimal wavenumber. The critical 
Rayleigh number of linear theory is given by + 2RFREtC+ O(Cz). 

250 ! 
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150 -_ 

m 
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-50-. 

-loo+ 

-200 

-250 t 
FIGURE 5. The function Rgi(M) for the present two-dimensional linear theory of buoyancy- 
thermocapillary convection in layers. R t )  gives the O(G)  correction to the number R(LD). Mo x 67 
is the value of the Marangoni number for which R:) = 0. 

Hence, in the linear theory and with the assumptions of an insulated surface and 
stationary onset, the surface displacement may be calculated exactly by solution of 
the normal stress balance, using the stress calculated on the fixed domain 0 < z < 1. 

We have computed the first-order fields and their adjoints by methods described in 
the appendix, and have evaluated R(l)(M) using (5.12). The results are given in table 2 
and figure 5 for the special case G = 0. The general case for G =# 0 can be obtained 
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through (5.13) by multiplying the above value by $/(a2 + G).  Clearly, the G = 0 case 
must be handled with caution since the long-wave limit, a --f 0,  is singular. This limiting 
case is discussed in detail by Smith (1966). 

We can see from figure 5 that, for 0 < M < M, E 67, Rg’ > 0,  indicating that weak 
surface deflexions stabilize the layer; the layer is destablized for M > M,. 

The latter result is in accord with the calculations of Scriven & Sternling (1964) and 
Smith ( 1  966) who found a destabilization with increasing capillary number for pure 
thermocapillary convection (i.e. R = 0) .  Scriven & Sternling conjectured (incorrectly) 
that surface deflexions will in general be destabilizing for free-surface instability 
problems. This conjecture is in accord with one’s expectation that an increase in the 
degree of freedom of a mechanical system will, if anything, lower the stability limits. 
I n  the case of convection driven primarily by buoyancy, however, the opposite is the 
case. The reason is that the normal stress on the surface is negative (positive) above 
upwelling (downwelling ) fluid in pure buoyancy-driven (thermocapillary ) convection 
(see Jeffreys 1951; Davis & Segell963; Scriven & Sternling 1964; Kayser & Berg 1973). 
Application of (5.13), which is valid for small C, leads immediately to the result that 
surface deflexions for predominantly buoyancy-driven convection are stabilizing. 
A physical interpretation of this result is given in 9 6. 

6. Discussion 
The analysis of @2-4 shows how energy stability theory can be applied to two- 

dimensional buoyancy-thermocapillary convection in fluid layers with free surfaces. 
The nonlinear Euler-Lagrange system (3.17) governs such a theory in that stability is 
guaranteed if R < RE, where RE is the smallest positive eigenvalue of system (3.17). 
The value of RE does not depend on the spatial period 2n/a of the disturbance since RE 
is obtained as the minimum over all a. However, R E  does depend on the physical 
parameters of the problem, namely M ,  G and C, as well as on the disturbance 
amplitude E .  

I n  order to assess the implications of the theory for a specific case, we have examined 
the limiting case of small capillary number C, where C = , u K / u o d .  Small C is equivalent 
to a large mean surface tension cro, a case for which the free surface is nearly flat. In this 
case weak surface deflexions act to increase RE, a stabilization that is due to the 
dynamic effect of the surface corrugations producing normal stresses that counteract 
the tendency toward instability. 

The results of 3 5 for the linear theory problem for C < 1 likewise show that free- 
surface deflexions can have a stabilizing effect and hence increase the critical value RL. 
This occurs when M is non-zero, but sufficiently small. I n  this case, in which the con- 
vection is dominated by buoyancy, the free surface is elevated above a rising current 
(Jeffreys 1951). This rising fluid is warm but is cooler than the equivalent fluid in the 
case of a flat interface, since the bulge allows augmented cooling. Similarly, at a 
descending current, i.e. a depressed surface, the temperature is higher than that in the 
flat interface case. Hence, the effect of the surface corrugation is to decrease the surface 
temperature gradient and hence the surface-tension gradient compared to the flat- 
interface case. This leads to a thermocapillary stress which is weaker than its value for 
a flat interface, leading to a stabilization. 

10-2 
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results. For example a t  M = 45 the numerical results of tables 1 and 2 indicate that 
The a priori knowledge that RE < RL limits the region of validity of the small-C 

RE& 13-6+ 1320C+O(C2) ( 6 . 1 ~ )  

and RL * 17.44+ 232C + O(C2). (6.1 b )  

These results are limited by the condition RE < RL. However, a more stringent limita- 
tion of the simultaneous validity of forms (6.1) is that i320C/13.6 < 1 or C < 
a condition that includes many physically realistic cases but fails well before RE w RL. 
The limitation is, of course, only on the small-C expansion of the Euler-Lagrange 
system, not of the energy stability theory in general. 

Results such as those of figure 4 are inherently ones of conditional stability. The 
value of RE depends in general on e.  However, in our example the leading term r(O), 

which is the solution of a nonlinear problem (4.3a), fortuitously is s independent, 
y(O) = 0. Hence, for our example, C + 0 is equivalent to a small-s solution. In  the small- 
C case the mean surface tension is too large to allow sharply peaked two-dimensional 
interfacial shapes, such as that shown in figure 1, to be generated. Furthermore, we 
find no strong tendency toward instability even if initially such a spike were present. 
This is because we have treated the two-dimensional problem in which a spike is really 
a thin sheet. The three-dimensional version of the present theory might well exhibit 
the effects of the tendency toward droplet break-off as illustrated in figure 1. 

7. Generalization 

that are symbolically of the type 
In the formulation of the power integrals in 3 3, we considered evolution equations 

p-iavi/at = F~ ( 7 . 1 ~ )  

and a q a t  = GW ( 7 . l b )  

As is usual, we then multiplied (7.1 a )  by vi and (7.1 b )  by 0 to form the power integrals 

(7.2) 
d 
dt 
-($P-'v,v~) = (viFi), 

The crucial step in the free-surface analysis was the observation that the kinematic 
boundary condition is also an evolution equation that is symbolically of the form 

as/at = ~ ( 1 ) .  (7.4) 

We then formed a third power integral, 

(7.5) 

where W is a known weight function. (We actually used W = 1.) The energy theory 
follows by combining (7.2), (7.3) and (7.5) into a simple generalized energy functional 
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and formulating a variational principle. In  effect, we have considered the governing 
equation as a vector system for the vector 

and considered the set of evolution equations of the type 

$t = F. 

The generalized energy is obtained by forming the scalar product 

11 0 0 )  n 

0 } 4J = (vivi + he2) + J r 2 / N ,  
S(1) 0 0 l / N  

and the energy theory follows from form (7.6). 
It is worth noting that this formulation reduces to the classical one for planar, stress- 

free surfaces (Davis 1969) in the limit y + 0. That is, by treating the kinematic condi- 
tion as an evolution equation, analyzing as described and then letting 9 + 0,  we regain 
the kinematic condition w = 0 on z = 1 as a natural boundary condition. 

If the basic state were dynamic, involving a basic shear flow, precisely the same 
formalism would be valid although new terms would appear in the functional G .  

Clearly, the same procedure will go through if three-dimensional disturbances 
are allowed. Instead of having derivatives a/a, with respect to arc length s, 
a/a, = (1 /N)  a/ax, we would have two independent directional-derivatives f ( a ) .  V, 
a = 1 , 2 ,  corresponding to the two independent surface co-ordinates that describe the 
surface. Rather than using integration by parts, surface divergence theorems are 
required (Moeckel 1975). In summary then, although the algebraic and geometric 
complexity is increased, the three-dimensional energy-stability theory in principle 
proceeds in the same way as does the two-dimensional theory. 

An attractive aspect of our formulation is that all bulk-stress effects are given in 
terms of the stress tensor cii. Thus, the equations of motion and the boundary 
conditions are formulated so as to be valid even when the bulk is a non-NewtonianJluid. 
The same formalism holds. 

We now consider the possibility of including more exotic surface properties in the 
theory. We assume that the interface possesses a surface excess mass density ys, a sur- 
face tension c with surface-tension gradient Vsa and surface shear and dilational 
viscosities ,us and p, respectively. These surface quantities satisfy (Moeckel 1975) 
balance laws of mass and momentum of the form 

- = SZ) on s ( t )  ( 7 . 7 ~ )  

(7.7b) 

(7.7c) 

at 

hi y - = 5(3) and 8 at z on B(t), 

where S(2) = - v, . (y,v) + 2Hy, v 
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and Sca) = - V, . ( y8vv) + V,rr + y,V:v +pa V,(V, . v) + u. n + 2HaVn.  (7.7 d )  

Here n is the unit outward normal vector to S ( t )  and His the mean curvature of S(t). 
We have assumed that S ( t )  is a material surface and that the passive gas boundary 
S(t) exerts negligible forces on S(t) .  (These restrictions are easily relaxed.) The interface 
moves with velocity Vn. 

The forms (7.6a, b) ,  since they involve local time derivatives, should be treated as 
evolution equations. The power integrals are obtained by respectively multiplying by 
ys and vi. The results are of the form 

and 

We then form a generalized energy function E ,  
n 

(7.9) 

(7.10) 

where h > 0 is the linking parameter. The statement of this functional is again the 
crux of the theory since the formulation of the variational problem is then straight- 
forward. 

If we imagine taking the limit of y,, y,, yd + 0, then the Euler-Lagrange equations 
emerging from form (7.10) automatically give the same system as obtained by letting 
y,, y,, y, = 0 a priori and applying the stress jumps (2.11 d )  as side conditions. Again, 
our procedures yield the appropriate generalization. 

Hence, the recipe for the full formulation involves recognizing that a vector t$ must 
be defined. To obtain (7.10), we take 

(7.11) 

The elements of Jr consist of all those variables that explicitly evolve in time, i.e. 
those upon which the local time derivative is applied. The full system is 

$t = F (7.12) 

and (7.13) 

All of the appropriate surface boundary conditions of the Euler-Lagrange system for 
equation (7.13) are natural boundary conditions. Energy stability results can then be 
obtained either analytically or numerically. 

In  all the above discussions, it  has been presumed that the interface S(t)  does not 
intersect a solid boundary. Such an intersection is called a contact (or common or 
three-phase) line. When the no-slip condition is applied at  the solid wall, any move- 
ment of the contact line (due to motion in the basic state or due to disturbances) is 
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associated with a non-integrable singularity (Dussan V. & Davis 1974). With no 
modification of the model, the power integrals analogous to those in 8 3 would not exist. 
However, effective slip (see Dussan V .  1979) inserted near the contact line relieves this 
problem and hence makes our energy theory applied to such problems well defined. 

S. H. D. and G .  M. H. are grateful for the partial support of this work through grants 
of the National Science Foundation, Fluid Mechanics Program, and United States 
Department of Energy, respectively. 

Appendix 
We record here the expansions of the natural boundary conditions (3.17e, f, g ,  h) to 

arrive a t  (4.11), (4.12a-c). We begin by writing (3.17e) in its normal and tangential 
components: 

4K = C[gi,in,ng+SMK($/Rh-r)] on z = 1 +r,  ( A  1)  

aijnjti = -&M[$'/Rh-q,]/N on z = l + r .  ( A  2)  

K(0) = 0, (A 3a)  

( A  3b) 

By expanding all variables in powers of C, we get from ( A  1 )  at O( 1 )  

K(1) = 7;1(1) - 2g(?)n(O) (0 ) .  and at O ( C )  xx - 23 a '9 

Equations ( A  3a, b )  are equations ( 4 . 3 ~ )  and (4.11) of the text. In what follows, we use 
the solution to ( A  3a),  namely q ( O )  = 0, and the expansions for N ,  ni, ti given in (4.5). 

By expanding ( A  2)  we get at  O( 1)  

Equation (3 .17f)  is 
1 M  
2 Rh 

$,ini - - - vU;t,/N - hR( 1 - N )  = 0, 

where we have used the result N = 1 + O(C2). Thus to O( 1)  this becomes 
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and at  O(C)  
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Mu$“ 
2h(O)R(0)2 * 

D, = -- 

It remains to expand (3.17g). It is best to begin by noting that 

((crviniN)“-3)’ = w g  + c wgi + w!&p- (U(o)Tg)),,+ (w(0) z 712 )x 

+ wg) @ - - RWhW M (w“$‘”)x,] + O(C2), z = 1 

[ 

Therefore, equation (3.17g) becomes, a t  O(l), 

wg .  = 0, 2 = 1, 

and at O(C),  using many previous results, 

Thus by referring to (4.12), we have 

or in terms of normal modes 

El = M [ u ( ~ ) ] ~ = ~  + terms proportional to exp {2im]. S’ 
In  order to satisfy constraint (3.17 h) ,  we choose p(0 )  = 0.  

We now wish to briefly describe the numerical method used to compute the results 
of figures 4 and 5. In order to apply (4.16) and (5.3) for R$) and R t )  respectively, it is 
necessary to solve for the zero-order eigenfunctions of systems (4.2), (4.6), (4.7) and 
(5.4). We choose to do this in terms of the exact solution to the reduced sixth-order 
problem which is equivalent to (4.2a, b, c) and (5.4a, b, c) (Pellew & Southwell 1940). 
Eliminating do), do), qP), p(O) from each of these, we find in the usual way that the 
function wo(z), where w(O)(z, z )  = w&) eiaz, satisfies 

( D2 - a2)3 wo = - 92a2wo (A 15) 

with w0 = Dw, = (P-CZ‘)~W~ = 0, z = 0, (A 16a) 
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in the case of energy theory, and 

wo = Dw, = ( 0 2  - a 2 ) 2  w, = 0, z = 0, (A 17a) 

(A 17b) 

in the case of linear theory. Here D = d / d z ,  and for simplicity we have written 
(A(,), R(O), a(,)) as ( A ,  R, a). (For the linear theory, h = 1,9  = R . )  The exact solution of 

M 
R2 

wo = D2wo+-(D2-a2)2wo = D(D2-CC2)2W0 = 0, 2 = 1 ,  

6 

(A 15) can be obtained in terms of complex exponential functions, wo = Z A ,  exp {Qn z},  
n=l 

as shown by Pellew & Southwell (1940). At an eigenvalue, the 6 x 6 coefficient deter- 
minant corresponding to (A 16) or (A 17) vanishes. The eigenvalues R(EO), Rf‘) were 
determined by iteration and the corresponding constants {A,} by Gaussian elimination. 
All other field variables, #(O), p(O), v@z$o)n\o) may be determined, in terms of normal 
mode amplitudes #,, po ,  coijnninj, directly from the {A, , ) .  The solution to  the problem 
adjoint to the linear stability system was determined by identical means. Simple 
multiplications and an integration over z gives the numerical results for Rg) and R(L1) as 

2M 
a2 - [Dwo( -Po + 2 ~ w , ) l , = ,  

(A 18) Rg) = 
(A(”+&)J; ~ o # o ~ ~ + ~ ) [ ~ o ~ w o l z = l ’  M 

Jol (@$o+%& + R ( o , 2  [#0D4z=1’ 

M 
a2+G [DW -Po + 2Dw,l,=, 

(A 19) R(L1) = 
M 

The values of Rg) and RE) were found to be sensitive to a@) and A(o). For example, a t  
M = 40, an inaccuracy of 3 yo in h(0) causes an  error of only 0-05 yo in R(O), but a 4 yo 
error in R(”. It was necessary to determine a@) to within 0.5 yo and A(O) to within 1 % to 
achieve reasonable accuracy. 
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